Understanding your TNB Bill

Updated 08 March 2013

TV ENGINEERING SERVICES
 www.tkes.com.my

For more information, please contact us at
enquiry@tkes.com.my
Or SMS/Call +6013.300.2388

Purpose

* Suitable for Commercial Tariff (Tariff C) and Industrial Tariff (Tariff E)
* An illustration of how electricity is billed by TNB
* Peak and off-peak use
* Energy
* Demand, Maximum Demand

Big Mac

* Each Big Mac has 538kcal (calories) as ENERGY
* Lets assume this is equivalent to 1 kWh of ENERGY
* In reality, 538 kcal is equivalent to 0.625 kWh

kWh

NO. JANGKA	MF	Dafulu	SEMASA	KTRG
98120396-11	1.0000	2439368.00	2454834.00	KWh
CA		UNIT -	KADAR 1	AMAUN
KECUNHAANN ELEKTRIK		5466.90	0.430 BlM	6650.38

Pay for the amount of energy used

Reading on Meter:
$2454834-2439368=15466$

Pay for the your BIG MAC

Think: RM 7.95 for 538 kcal of energy

Peak and Off Peak

M.

PEAK

OFF-PEAK

Peak and Off Peak

S

Peak hours:
080ohrs till 2200hrs

Off-Peak hours:
0000 hrs till 0800 hrs
2200 hrs till 0000 hrs

POWER

	DESCRIPTION	CALCULATION	UNITS
	Rate of Energy Consumption	$=\frac{\text { Energy }}{\text { Time }}$	Kilo-watt

Rate of Big Mac
Consumption
or
Number of Big

$$
=\frac{\text { Mac eaten }}{\text { Time taken to Eat }}
$$

How FAST can you eat the Big Macs.

Power

If you eat ONE Big Mac in 15 minutes

$=4 \mathrm{Big}$
Macs per hour

Power: More examples

Demand

* Number of Big Macs you eat calculated based on a fixed 30minute intervals
* Unit: Big Mac per hour
- Power

Demand is ONLY calculated during Peak Hours

- Amount of Energy consumed in fixed 30-minute intervals
- Units: kW (which is kWh per hour)

罗

Time
(fixed 30 mins period)
0800 till 0830 hrs

TNB Maximum Demand

Day	Time	Demand
01 Jan 2013	$\begin{aligned} & 0800-0830 \mathrm{hrs} \\ & 0830-0900 \mathrm{hrs} \\ & \ldots \\ & 2130-2200 \mathrm{hrs} \end{aligned}$	50kW 60kW ... 45 kW
...		
31 Jan 2013	$\begin{aligned} & 0800-0830 \mathrm{hrs} \\ & 0830-0900 \mathrm{hrs} \\ & \ldots \\ & 2130-2200 \mathrm{hrs} \end{aligned}$	51kW 80kW ... 30 kW

The highest demand recorded by TNB for the month.

Why Maximum Demand

Imagine:

Once a month, you order 1000 Big Macs per hour.
At other times, you order 500 Big Macs per hour.

Result:
Typically, there will be over \& wasted capacity.
(Staff, kitchen size, stock)

Why Maximum Demand

Imagine:

Once a month, you use 6,400kW
At other times, you use $5,300 \mathrm{~kW}$

Result:

Typically, there will be over \& wasted capacity.
(Cables, transformers, generators)

Time of Use

Charge more when you use energy during peak hours

Charge more if you order Big Mac during Peak hours. Charge less when you order Big Mac when restaurant is quiet.

Tariff C

Tariff	DESCRIPTION	CALCULATION	
$C 1$	Same charge for peak and off-peak energy usage Cheaper MD Charge	Energy for Peak-hours Energy for Off-Peak Maximum Demand	: RM 0.312 per kWh : RM 0.312 per kWh : RM 25.90 per kW

Cheaper off-peak energy charge

Energy for Peak-hours
: RM 0.312 per kWh Energy for Off-Peak VERY expensive MD Maximum Demand : RM 0.192 per kWh Charge

Tariff C

Tariff

DESCRIPTION

Good for those: Use a lot of energy during peak Use very little during off-peak

Can apply for special discount: OPTR - 20\% discount for off-peak use

Good for those: Using constant or almost constant amount of energy during peak and off-peak period

No discount.

Way to save is to use more energy during off-peak.

Energy (kWh) split to Peak and Off-Peak.

Since this customer has OPTR, they get a discount for Energy used in Off-Peak hours

Power Factor

* Also called "PF" for short.
* Does not have unit, as it is a 'ratio'.
* This is a penalty. (If pf drops below 0.85)
* Big Mac Example: You order food, but return some of it.

DESCRIPTION

- You order (for example) 100 burgers, but you return 20 burgers.
- You take energy, but don't use it. Instead, you return in to TNB.
- This is called "Reactive Energy".
- Units in kVArh

Energy: Active and Reactive

Energy

You take the energy, you use it.
Description
Also known as "real energy" or "active energy".
kWh
kVArh

Motors, fluorescent lamps (part of it used, part of it returned)

Power Factor

$$
\begin{aligned}
\text { Power Factor } & =\frac{\text { Real Energy }}{\sqrt[2]{(\text { Real Energy })^{2}+(\text { Reactive Energy })^{2}}} \\
& =\frac{k W h}{\sqrt[2]{(k W h)^{2}+(k V A r h)^{2}}}
\end{aligned}
$$

DESCRIPTION

- You can only "return 52% " of your Big Mac before you get a penalty.
- 52% is based on weight
- Penalty only if PF is below 0.85
- Use Capacitor Banks to keep PF high.

Real Power, Reactive Power, Apparent Power

	Unit	Analogy
Real Power	kW	The number of Big Macs you eat, per hour.

Reactive
Power

Apparent Power
kVAr
kVA

The number of Big Macs you return, per hour

The number of Big Macs you order from the counter, per hour. This includes Big Macs that you will eat and return.

Thank you

Acknowledgement: Trademarks belong to their respective owners. Credit to all image copyright holders.

